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Molecular charge-density functions for several diatomic molecules of first-row atoms have been analyzed 
by the least-squares method with pseudoatoms that have restricted radial functions. Multipole expan- 
sions up to quadrupoles on the two centers with single exponential radial functions provide qualitative 
descriptions of the molecular charge densities. They do not provide accurate values of molecular 
electrostatic properties, however. Extension to octupoles and hexadecapoles does not improve the 
representation of physical properties. Variations of the valence exponents proved to be the most critical 
parameters for goodness of fit as well as for retrieval of physical properties. For the selected examples 
in this work it appears that the valence exponent is more sensitive to the atom type than to the bonding 
environment; the exception is the hydrogen pseudoatom. 

Introduction 

In a previous paper (Stewart, 1976) it was proposed 
that accurate X-ray diffraction data be analyzed for 
static charge-density information with rigid pseudo- 
atoms. The pseudoatom is spanned by a small finite 
multipole expansion about its nuclear center. The 
multipoles serve as basis functions for an electron 
population analysis. The Fourier transforms of these 
bases, the generalized X-ray scattering factors, are 
used in a least-squares analysis of kinematic structure 
factors. The model is intended to retrieve (or measure) 
the static charge density in the asymmetric part of the 
crystallographic unit cell. It has also been proposed 
(Stewart, 1972, 1976) that the results of the least- 
squares analysis can be used to determine a variety 
of physical properties of the crystalline material. 

The multipole model advocated for X-ray structure 
analysis is restricted to single exponential representa- 
tions for the radial density functions of the pseudo- 
atom. In the present paper, we give results for fits of 
these restricted functions to known one-electron dens- 
ity functions for several diatomic molecules. These 
relatively simple systems can serve to establish the 
limitation of single exponentials for the representation 
of the molecular density functions and of the several 
molecular averages. In this study we hope to establish 
prospects of these density functions for application to 
real diffraction data of first-row-atom materials. 

Least-squares calculations and static charge properties 

Projection studies of the one-electron density function, 
~o(r, R), are carried out by the method of least squares. 
The molecular form factor, Fo(S, R), is computed from 
a molecular wavefunction by methods previously pub- 
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lished (Bentley & Stewart, 1973). A model molecular 
form factor Fc(S, R) is assigned population and expo- 
nential parameters to be determined by least squares: 

2 

F¢(S,R)= ~ [Cc, pfcore, p(S) 
p = l  

Lp 

+ ~ Cl,p(i)%,p(%,S)Pz(~) exp [ ( -  1)PiSRri/2], (1) 
1=0 

where q = S .  R/]SI IRI, i=  V - i ,  S is the Bragg vector 
with ISI =4re sin 0/2 and R is the internuclear vector 
from center 1 to center 2. The coefficients Cz,p for 
pseudoatom p are electron population parameters. The 
sum over l implies a multipole expansion for the valence 
shell on center p. The function Pz(r/) is an lth order 
Legendre polynomial and the valence radial scattering 
factor 

f~, . (~ ,  s )  = [~;, + 3/(n~ + 2)!] 

S x _,r "p+2 exp (-o~prp)jl(Srp)dr p . (2) 
0 

The details for the choice of n~ in (2) and for the core 
density function for fcore, p(S) are given below. The 
least-squares function for the projection studies is 

a(SmaxC, oO= f~ma" Si, 12o'C ]Fo(S,R) 

-F~(S,n)lzS2d~odrldS, (3) 

where ~0 is the azimuthal angle of the Bragg vector 
about the internucleus vector R and Smax is the limit 
of the sphere of diffraction data. Note that (3) and 
(1) constitute a model study for a non-vibrating di- 
atomic molecule. When S .... is infinite then (3), by the 
Fourier integral theorem, is 

~(cxz'C'Gt)=(2rc)3 I [Qm°1(r'R)-Q~(r'R)]2dr' (4) 

where r is the vector from the origin (the midpoint of 
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R) to an infinitesimal volume element of the charge 
density in the diatomic molecule. Many of the results 
in this paper come from minimization of (4) with 
respect to C and a. By minimization of (3) the in- 
fluence of Smax on the results has been determined as 
well. 

The quality of fit of Fc to F0 (or ~Omo 1 to Oc) is judged 
in several ways. A least-squares figure of merit is the 
relative root-mean-square error, 

Rw=le(Smax, C, at)/llSm,~ l IFo(S,R)IZdS] t/2 . (5) 

Other criteria are found by comparison of physical 
properties calculated from &(r,R) with those from 
~Omol(r ,R). In this work we concentrate on molecular 
quadrupole moments, dipole moments, total charge, 
and electric fields and electric field gradients at each 
nucleus. 

If Q(r,R) is known, the molecular average for an 
electrostatic operator, A(r), is 

(. 
( A ) =  1 A(r)Q(r, R)dr .  (6) 

For a diatomic molecule the properties of interest are: 
Dipole moment: 

I I= ½ ( Z B -  Z A ) R -  ( z )  . (7) 

Quadrupole moment (mass center): 

QAB= (ZAm 2 + Zsm])RZ/(m2A + rn~) - (r2P2(cos 0)).(8a) 

Quadrupole moment (center A): 

QAn = Z n R 2 - ( r  ZAPz(COS 0A)). (8b) 

Electric field at nucleus A: 

eA = -- ZB/R 2 + (r  ~ 2pl(cos OA)) . (9) 

Electric field gradient at A: 

qA = 2 Z s / R  3 -  2(r  23P2(cos OA)) . (10) 

ZA and m A are the atomic number and mass of nucleus 
A respectively, (z) is taken with respect to the mid- 
point between nuclei and (r2p2(cos 0)) is evaluated 
with the origin at the center of mass. When Q(r,R) is 
given by a multiple expansion with single exponentials 
all integrals are simple analytical expressions. 

The formulas given in (7)-(10) are derived with the 
normalization condition, 

f 0(r, R)dr = Za + Zu.  (11) 

For the present study, Qc(r,R) is not constrained to 
satisfy (11). The sum of the variable monopole popula- 
tion coefficients is compared to the total number of 
electrons in the molecule. When the ratio differs greatly 
from unity it is indicative of a deficient pseudoatom 
density model. For calculations of (7)-(10), the variable 
monopole population coefficients are renormalized to 
satisfy (11). In the minimization of (3) and/or (4) 
&(r,R) is also not constrained to be positive definite 

for all r. We find in practice that this degree of freedom 
is not serious and that all oc(r,R) investigated are 
effectively positive definite. 

Molecular wavefunctions for the diatomic molecules 

The molecules studied in this work are the diatomic 
hydrides AH ( A = B ,  C, N, O and F) and the 14 
electron family, N2, CO (1X) and BF. The wavefunc- 
tions of near Hartree-Fock quality, are taken from 
Cade & Huo (1967) for the hydrides, Cade, Sales & 
Wahl (1966) for N2 (wavefunction 2D) and Huo (1965) 
for CO and BF (wavefunctions at experimental Re). 
For these molecular wavefunctions, the molecular or- 
bitals were spanned by extensive sets of Slater-type 
functions and were determined by solving the Hartree- 
Fock-Roothaan equations of motion for the electrons 
(Roothaan, 1951). 

Core monopole studies 

It is generally assumed that the coherent X-ray scatter- 
ing by the atomic-core electron density is invariant 
to chemical bonding. Our previous studies of the mono- 
pole scattering factors for pseudoatoms in diatomic 
molecules cogently support this assumption (Bentley & 
Stewart, 1975). There is some ambiguity, however, in 
the choice of a core density function. For example, it 
has been suggested that the (ls) 2 SCF orbital product 
of a first-row atom be defined as the core-electron 
atomic density function (Stewart, 1968). But the elec- 
tron density on or near the nucleus of an isolated 
atom has a contribution from the (2s) z SCF orbital 
product as well as from (1S) 2. Thus a ~ls) 2 density 
populated with two electrons does not give all the 
charge on or near the nucleus in the isolated atom. 
This may also be true for the pseudoatom in a mol- 
ecule. To add more flexibility to the monopole of the 
pseudoatom, a variable electron population parameter 
is assigned to the Hartree-Fock ls orbital product in 
the pseudoatom density model, pc(r, R). 

Extensive studies have been done with a (Zls) 2 where- 
by the electron population is fixed at two or allowed 
to vary. Results from solutions to the least-squares 
equations (3) and (4) show that a doubly occupied 
(ZI~) 2 function is not an adequate representation of the 
core density. The total electron charge from the fixed- 
core-population model is 2-3% lower than the total 
charge determined with both variable core and valence 
population. The figure of merit, Rw from (5), was 
larger by a factor of 1-5 to 2.5 for the fixed-core 
model than for the variable-core electron function. The 
differences in Rw are smaller when (sin 0/2)max is re- 
stricted to a sphere of 0.7 A -1 or 1.4 A -a, but core 
charges are essentially the same. Molecular dipole and 
quadrupole moments from the variable-core model 
are generally in closer agreement with the starting 
molecular density values than results from the fixed- 
core case. Electric fields and field gradients are essen- 
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tially insensitive to the core monopole representation. 
The results reported below include a variable po- 

pulation for the core density function. The average 
core population is 2.10 with a trend for smaller popu- 
lations for nuclei with smaller charge and larger than 
2.1 for O and F atoms. If this trend is also true for 
organic molecular crystals, then the variable scale 
factor, as proposed by Stewart (1976), will be too 
large by ,,~ 5%. 

Valence density representations 

The major results are based on expansions up through 
quadrupole terms for each pseudoatom in the diatomic 
molecule. For first-row atoms the valence radial func- 
tions for each multipole are of the form, r 2 exp ( - ~ r )  
so that a is a variable parameter and shared among 
the first three multipoles. These functions plus the 
core monopole are assigned electron population par- 
ameters. For the hydrides, the hydrogen pseudoatom 
is expanded with the radial basis, e x p ( - a n r ) ,  
r exp ( - ~ n r )  and r2exp (-c~nr) for the monopole, 
dipole and quadrupole functions respectively. All three 
multipoles are given a variable electron population 
parameter and the variable exponential parameter ~H" 
In addition to variable ~ parameters, we also report 
results for standard molecular exponents (Hehre, 
Stewart & Pople, 1969). In this case the ~ parameter 
is fixed at twice the standard molecular exponent 
value. These exponents are average values from par- 
ameters which minimize the energies in minimal basis- 
set molecular-orbital calculations. Exponents obtained 
by an energy criterion need not be the best least- 
squares exponents for fitting of charge densities. 

Results 

Figs. 1 and 2 summarize the trends for the diatomic 
hydrides whereby (4) was minimized with both stan- 
dard molecular exponents (SM) and with variable 
exponents (LS). In Fig. 1 it can be seen that Rw is 
dramatically improved for BH and CH by minimiza- 
tion with respect to the exponential parameters in 
addition to the electron population coefficients. Note 
that Rw, however, is between 0.02 and 0.01 for all the 
diatomic hydrides when the model employs restricted 
radial functions of a single exponential type. By con- 
trast, unrestricted radial functions with expansions up 
to quadrupolar terms on both centers of the hydrides 
have an Rw of 0.002 (Bentley & Stewart, 1975). The 
total charge for the hydrides (see Fig. 1) is rather 
close to the total number of electrons (3% or better) 
when the exponential parameters are varied in addi- 
tion to the electron population parameters. For fixed 
exponents at standard molecular values the total charge 
is rather less. The dipole moments of the diatomic 
hydrides are reproduced much better with the LS 
model than the SM model. The one exception is for 
FH. The quadrupole moments from the LS bases are 

closer to the SCF values as well. As illustrated in Fig. 
2 the electric fields at the heavy atoms of the hydrides 
depart markedly from the SCF values. This is primarily 
due to the core charge deformation (Bentley & 
Stewart, 1974) which is not included in the model here. 
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Fig. 1. Properties for diatomic hydrides, BH to FH. Values 
displayed are Rw (relative root-mean-square error), ( ) 
(total charge), /t (dipole moment) and Q (quadrupole 
moment with origin at the heavy atom). LS is for variable 
valence exponents; SM is for standard molecular exponents; 
SCF is molecular average property. All units are a.u. 
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Fig. 2. Electric fields and electric field gradients for diatomic 
hydrides, BH to FH. ea and en are electric fields at the heavy 
atom and hydrogen atom respectively, qA and qH are similarly 
the electric field gradients. LS, SM, and SCF defined in 
caption for Fig. 1. All units are a.u. 
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If a core deformation density function with the ex- 
ponent taken from Bentley & Stewart (1974) is in- 
cluded in the charge density model, then the SCF values 
for the electric fields at the heavy-atom nucleus are 
closely reproduced. Other physical properties are not 
changed with inclusion of the core dipole density 
function. The LS model reproduces reasonably well 
the electric fields at the protons, however. In this case, 
the model does include a relatively flexible dipole 
density function for the hydrogen pseudoatom. The 
electric field gradients at the heavy atoms are correctly 
given to within a few tenths of atomic units. On the 
other hand, the field gradients at the protons are very 
poorly given. Although the H pseudoatom does in- 
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Fig. 3. Properties for the 14-electron series, BF, CO and N2. 
Values displayed are Rw (relative root-mean-square error), 
( ) total charge, /1 (dipole moment) and Q (quadrupole 
moment with origin at center of mass). LS, SM and SCF 
defined in caption for Fig. 1. All units are a.u. 
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Fig. 4. Electric fields (ea) and field gradients (qa) at the atoms 
in BF, CO and N2. For O and F the field is with respect to 
center B. LS, SM and SCF defined in caption for Fig. 1. All 
units are a.u. 

clude a quadrupole term, the restricted radial density 
model is still unsatisfactory for a reliable estimate of 
hydrogen-atom electric field gradients in these di- 
atomic hydrides. 

Figs. 3 and 4 summarize the results for the 14- 
electron series BF, CO(1Z'), and N2. A sin the diatomic 
hydride series, the LS model affords a rather smaller 
relative root-mean-square error (Rw) and a total elec- 
tron charge that is closer to a neutral molecule than 
what the SM model gives. Both LS and SM models 
give rise to poor dipole moments for both CO and 
BF but the former model reproduces the SCF quadru- 
pole moments rather well. In Fig. 4 are shown the 
electric fields and electric field gradients at B, C, N, 
O and F for BF, CO and N2. [The electric-field results 
for O and F, atomic numbers 8 and 9, are shown for 
center B so that in equation (9) the symbols A and B 
are interchanged.] Both LS and SM models give elec- 
tric fields with sizeable discrepancies from the SCF 
starting values. As with the hydrides, inclusion of 
dipole core-deformation functions from Bentley & 
Stewart (1974) brings the least-squares results into 
satisfactory agreement with the molecular values. The 
electric field gradients are reproduced with a quality 
comparable to the heavy atoms in the diatomic hy- 
drides. 

Up to now the discussion has focused on those 
results which minimized the least-squares function (4). 
A finite Ewald sphere [equation (3)] may influence the 
molecular properties and pseudoatoms somewhat. 
Studies were restricted to spheres with (sin 0/JL)max at 
0.7 A -1 and at 1.4 A -1. It was generally found that 
the physical properties showed some dependence on 
Sm,x, but these variations were very small compared to 
the differences from the SCF expectation values. The 
major conclusion to be drawn is that the Fourier 
coefficients of the molecular density function within 
a sphere of 1.4 A -1 in sin 0/2 are probably adequate 
for a detailed charge density analysis. The limiting 
feature for electrostatic physical properties is the single 
exponential radial density function m o d e l  for the 
pseudoatom rather than an inaccessibly infinite Ewald 
sphere. 

Table 1. Valence exponents for first-row atoms 

B C N O F 

~a from AH 2"39 3"05 3"75 4"46 5"25 
0~,~ from AB 2"34 3"04 3"72 4"43 5"16 
0c,~ from Hartree-Fock atom 2-36 3 .05 3 .77 4 .47  5.16 
Standard molecular value* 3.00 3 .44  3 .90 4.50 5-10 
0oH from AH 2.10 2 .24 2 .29  2 .13 1.76 

* Taken from Hehre, Stewart & Pople (1969). 

For almost all cases variable exponential parameters 
in the least-squares equations afford physical proper- 
ties in closer agreement with the molecular averages. 
In Table 1 we list the values of the exponential par- 
ameters found in this work. These restricted radial 
bases give a reasonably qualitative description of charge 

4, C32A-11" 
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density in diatomic molecules, and electrostatic pro- 
perties which have the correct trends, if not the correct 
values. The exponent parameters for isolated Hartree- 
Fock atoms are also listed in Table 1. These were 
obtained by fitting 

~OaCtom = (47Z)- 1[C0(ls) 2 -a t- Mr 2 exp ( -  ~r)] (5) 

to the Hartree-Fock atomic density with C, M and c~ 
as variable least-squares parameters. The Hartree- 
Fock atomic densities were taken from the SCF wave- 
functions of Clementi (1965). Note that the molecular 
~a values are rather close to the isolated-atom values 
and that for B, C and N the valence radial functions 
are considerably more diffuse than the energy-opti- 
mized values which are shown in Table 1 under stan- 
dard molecular values. The similarity between the 
valence exponents in various bonding situations sug- 
gest that they are characteristic of the atom regardless 
of atomic environment. This may mean, for example, 
that all nitrogen atoms in an organic molecular crystal 
could share the same valence exponent as a refinable 
least-squares parameter without unwarrantable re- 
striction of the model. 

For comparison the an values are also listed in 
Table 1. Except for H in HF, the pseudoatoms are 
contracted compared to the isolated H atom. Also 
note that the ~H value depends markedly on the di- 
atomic hydride from which it was extracted. 

In closing this section we mention that inclusion of 
hexadecapole and octupole deformation functions in 
the least-squares model led to very marginal improve- 
ment. This indicates that the restricted, single ex- 
ponential radial functions are the limiting feature in 
the present density model. 

Conclusion 

Projections of near Hartree-Fock one-electron density 
functions for diatomic molecules into finite multipole 
expansions for the pseudoatoms with single exponen- 
tial radial functions reproduce qualitative features of 
charge density, but do not consistently provide accurate 
values for physical properties. Total charge and elec- 
tric field gradients for the first-row atoms are most 

accurately retrieved. Electric fields, without a core- 
deformation model, are very poorly represented. The 
basic limitation is the inflexibility of the radial function. 
Stewart, Bentley & Goodman (1975)have shown that 
minimization of (4) with unrestricted radial functions 
leads to functional equations that automatically 
satisfy all molecular properties discussed in this paper 
if each pseudoatom is expanded up to the quadrupole 
level. Thus a small, finite multipole expansion can 
satisfy several static-charge properties, but a single 
exponential radial density function is severely limited. 
It is also clear from this work that valence exponents 
should be made a variable least-squares parameter in 
a charge-density analysis of structure factors. However, 
it appears that one can restrict this degree of freedom 
to the type of atom rather than to all atoms. If it is 
not feasible or practical to refine the exponent, then 
the values in Table ! for the first two rows are probably 
better than standard molecular values. 
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